Gases_

"The particles of the air are in contact with each other, yet they do not fit closely in every part, but void spaces are left between them, as in the sand on the sea shore: the grains of sand must be imagined to correspond to the particles of air, and the air between the grains of sand to the void spaces between the particles of air. Hence, when any force is applied to it, the air is compressed, and, contrary to its nature, falls into the vacant spaces from the pressure exerted on its particles: but when the force is withdrawn, the air returns again to its former position from the elasticity of its particles, as is the ease with horn shavings and sponge, which, when compressed and set free again, return to the same position and exhibit the same bulk."

midterm grades R Oct 21

labs and late lab reports

H_Exp 8 – in-person lab has lab partners; will need H_Exp 6 data

Friday quiz emphasis on gases, kinetic theory, no IMF

5.10 Van der Waals gas

REVIEW FROM MONDAY

Van der Waals Equation of State (EOS)

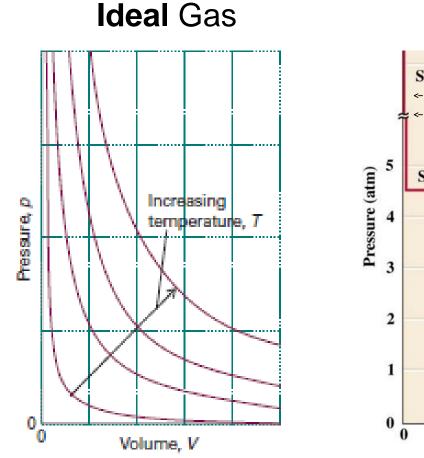
$$P = nRT / (V - bn) - a (n^2 / V^2)$$

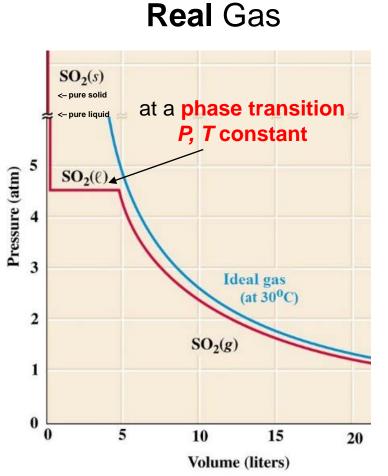
PV = nRT

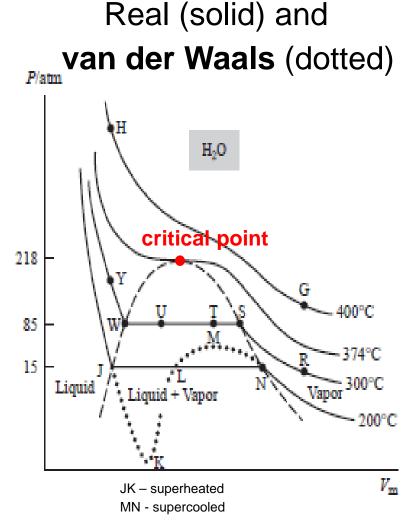
$$(P + a n^2 / V^2)(V - bn) = nRT$$

$$\left(P + \frac{an^2}{V^2}\right)(V - bn) = nRT$$

Van der Waals Constants of Several Gases						
Name	Formula	a (atm L ² mol ⁻²)	<i>b</i> (L mol ⁻¹)			
Ammonia	NH ₃	4.170	0.03707			
Argon	Ar	1.345	0.03219			
Carbon dioxide	CO ₂	3.592	0.04267			
Hydrogen	H ₂	0.2444	0.02661			
Hydrogen chloride	HC1	3.667	0.04081			
Methane	CH_4	2.253	0.04278			
Nitrogen	N_2	1.390	0.03913			
Nitrogen dioxide	NO_2	5.284	0.04424			
Oxygen	O_2	1.360	0.03183			
Sulfur dioxide	SO_2	6.714	0.05636			
Water	H_2O	5.464	0.03049			


Using Van der Waals Equation of State


Example: A 1.98-L vessel contains 215 g of dry ice. After standing at 26°C, the $CO_2(s)$ turns to $CO_2(g)$. What is the pressure of the gas if it were modelled as a) an ideal or b) a van der Waals gas? $M_{CO_2} = 44.0098$ g/mol b) $P = nRT/(V - bn) - an^2/V^2$ n = 215/44.0098 = 4.885a) P = nRT/V= (4.885)(0.082057)(299.15)/[1.98 - (0.04267)(4.885)]= (4.885)(0.082057)(273.15+26)/ $-3.592(4.885)^2/(1.98)$ 1.98


= 60.6 atm = 45.8 atm

 $P_{\rm real} = 44.8$ atm

Comparing Ideal, Real, and van der Waals Gases

predicts a phase transition

Forces, Vapor P, Phases____

"[There were] only two fundamental forces to account for all natural phenomena. One was Love, the other was Hate. The first brought things together while the second caused them to part." Empedocles ~ 450 BC

Evidence for Existence of Forces

condensed states of matter exist (solids, liquids)

real gases do not obey PV = nRT under all conditions

nonideal solutions – deviations from Raoult's law (Chapter 17 – Properties of Solutions)

Origin of Forces

electrostatic (coulombic – between ions, dipoles) induction or polarization (caused by ions, dipoles)

hydrogen bonding (H bonded to F, N, or O)

dispersion (motion of e⁻ causes an instantaneous dipole)

16.1 Intermolecular Forces

- 16.2 The Liquid State
- **16.10 Vapor Pressure and Changes of State**
- **16.11 Phase Diagrams**

READ SECTION IN PETRUCCI

Z Ch 16.1-2, 10-11, Petrucci

REVIEW FROM MONDAY

Types of Forces

in decreasing strength intramolecular (bonding)

- 1. ion/ion
- 2. covalent
- 3. metallic

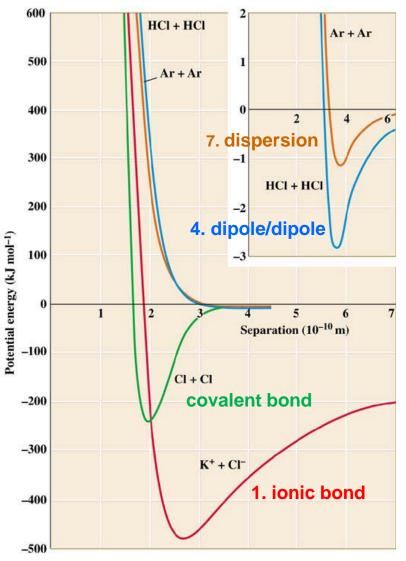

intermolecular (nonbonding)

table of forces all ways of combining ion, dipole, induced dipole in pairs

van der Waals

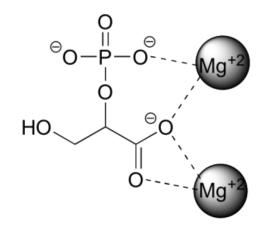
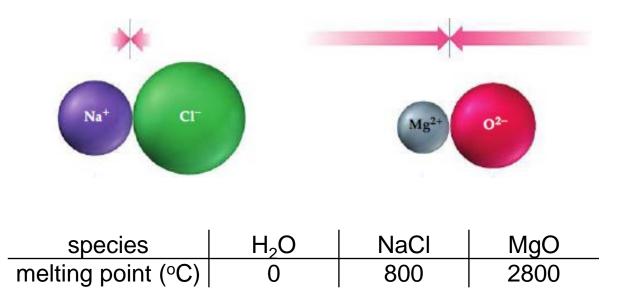
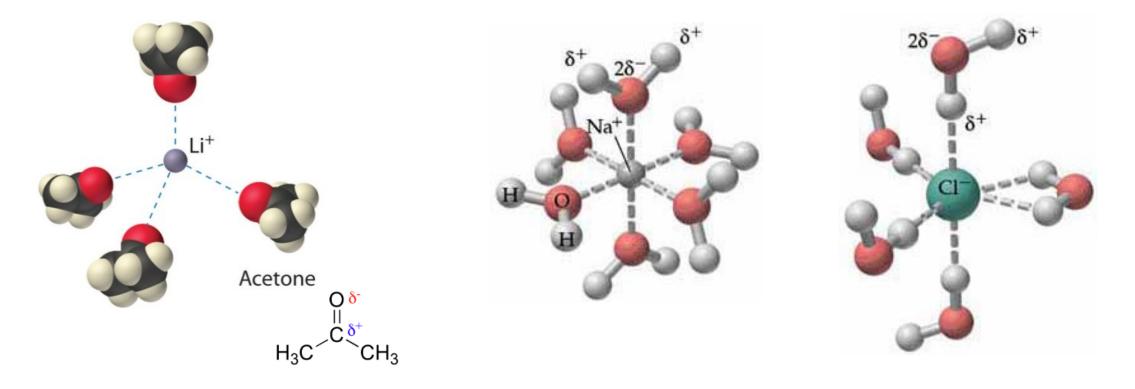

force	example	energy	
1. ion/ion	KF(s)	1/r	
2. ion/dipole	NaCl(aq)	1/r ²	
 hydrogen bond (strong dipole/dipole) 	H ₂ O(<i>I</i>)	1/r ²	
4. dipole/dipole	HCI(g)	1/r ³	
5. ion/induced dipole	He/Li+	1/r ⁴	
6. dipole/induced dipole	$H_2O(1) / O_2(g)$	1/r ⁶	
7. induced dipole/ induced dipole (dispersion, London)	Ne(<i>g</i>)	1/r ⁶	

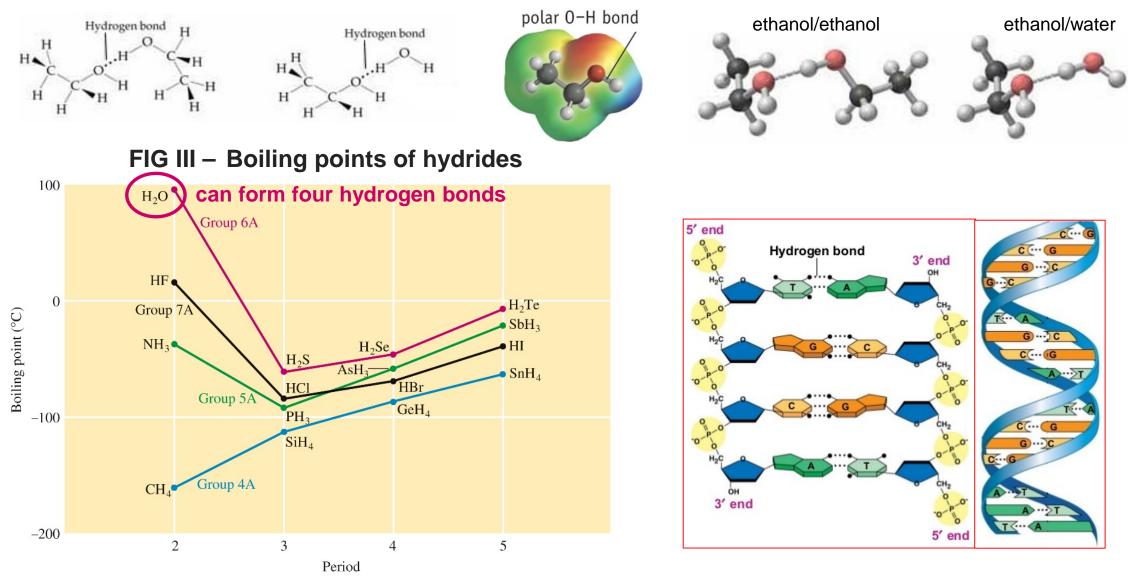
FIG I – Potential energy of pairs of atoms, ions, and molecules



lon / lon

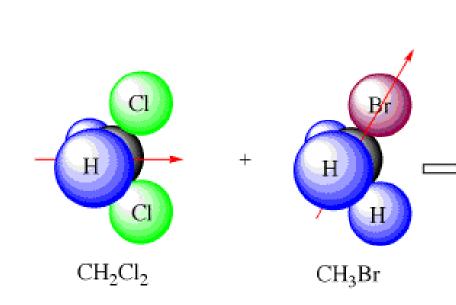
Strongest intermolecular force (IMF) gives us ionic bonding, the bond between a metal and nonmetal. It follows coulomb's law where the potential energy = $k Q_1 \times Q_2 / r$. Salts have extremely high melting points as a result.

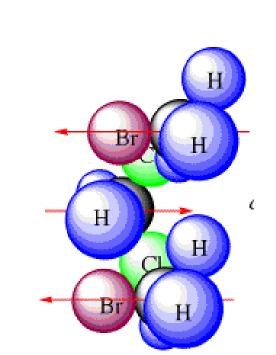

2-phosphoglycerate, an intermediate in the breakdown of glucose

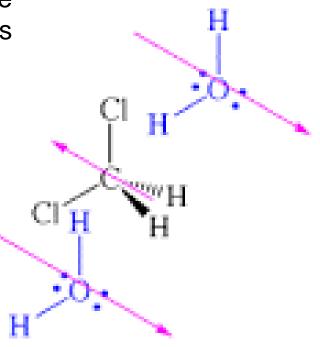

Ion / Dipole

Next strongest IMF are those between a full charge on an ion and the partial charge on a polar compound. Hydration is a good example.

dissolution of solid NaCl in water: NaCl(s) \rightarrow NaCl(aq) = Na⁺(aq) + Cl⁻(aq)

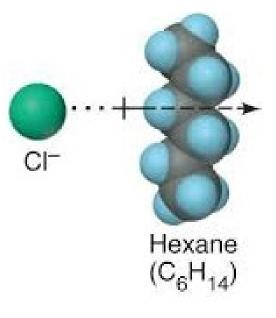



Hydrogen Bond (Dipole / Dipole)



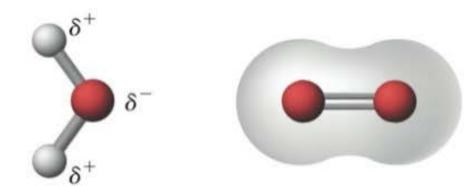
Dipole / Dipole

Interaction between neutral but polar molecules which involve the attraction between the partial positive and partial negative charges that exist in polar compounds.



Ion / Induced Dipole

IMF that exists between a full charge on one species and the electron cloud of a nonpolar species which becomes polarized.


molecule

Dipole / Induced Dipole

An IMF for a polar compound interacting with a nonpolar species. The dipole of the polar compound distorts the electron cloud of the nonpolar species, inducing a dipole moment in it.

solubility of gases in water (N_2, O_2)

The dipole of water induces a dipole in O_2 by distorting the O_2 electron cloud.

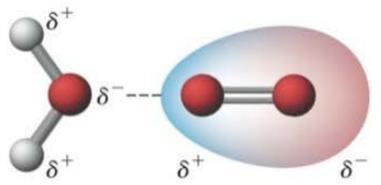
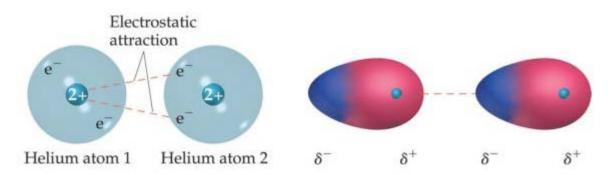
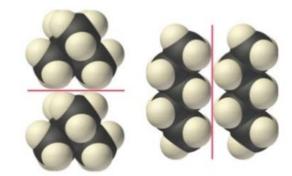



FIG IV – Water dipole inducing a dipole on O₂

Induced Dipole / Induced Dipole


IMF (London dispersion forces) that exist between nonpolar entities due to attractions between opposite charges which originate in the formation of instantaneous dipole moments induced by the polarization of valence electrons. Occurs for anything that has electrons.

Effect of Dispersion on Boiling, Freezing Point

halogen	bp (°C)	inert gas	bp (°C)	mp (°C)
F ₂	-188.1	He	-268.6	-269.7
Cl ₂	-34.6	Ne	-245.9	-248.6
Br ₂	58.8	Ar	-185.7	-189.4
I_2	184.4	Kr	-152.3	-157.3
		Xe	-107.1	-111.9
		Rn	-61.8	

very short ranged

2,2-Dimethylpropane (neopentane) 72 g/mol, 9.5°C

n-Pentane 72 g/mol, 36.1°C

Increasing surface area and boiling point

Methane	Ethane	Propane	n-Butane
16 g/mol	30 g/mol	44 g/mol	58 g/mol
-161.5°C	-88.6°C	-42.1°C	-0.5°C

Increasing mass and boiling point